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ABSTRACT 

An application of linear predictive spectral analysis, in particular 
the forward-and-backward averaging procedure, to tones in noise is made.  The 
accurate tone-frequency estimation capability and lack of tone-splitting make 
this an attractive technique for spectral analysis and estimation of tone 
amplitudes.  The effect of inadequate pole-order on the spectral estimate in 
white and colored noise is investigated in a number of examples.  The examples 
here indicate that the linear predictive technique should receive wider appli- 
cation for spectral analysis in the realm of underwater acoustics.  Two programs 
in BASIC for the Hewlett Packard 9845 for the cases of real and complex data 
have been written and are available from the author; they are modifications to 
the original program in FORTRAN written by S.L. Marple. 

ADMINISTRATIVE INFORMATION 

This research was conducted under NUSC Project No. A75205, Subproject 
No. ZROOOOlOl, "Applications of Statistical CommTmication Theory to Acoustic 
Signal Processing", Principal Investigator, Dr. A.H. Nuttall (Code 313), Program 
Manager, J.H. Probus (MAT 08T1), Naval Material Command. 

The author of this technical memorandum is located at the Naval Underwater 
Systems Center, New London Laboratory, New London, Connecticut 06320. 
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INTRODUCTION 

The linear predictive technique of spectral analysis has received a great 

deal of attention lately; see refs. 1 and 2 and the references listed therein. A 

comparison of several linear predictive techniques was made in ref. 3, with the 

conclusion that the then newly-proposed forward-and-backward (FSB) averaging 

technique and the Burg technique (ref. 4) were as good as any currently available. 

The reason that the Burg technique has been preferred over the FSB technique is 

not due to the quality of the spectral estimate (see ref. 3, page 81), but main- 

ly that a recursive procedure exists for the solution of the matrix equations 

for the Burg technique, whereas a full-order matrix inversion was required for 

the F&B technique at each filter-order considered.  The fact that the FSB techniqTie 

can occasionally (rarely) yield an unstable correlation recursion or a spiky 

spectral estimate (ref. 3, pages 41 and 35), is not a severe limitation of the 

technique in practice; in fact, for data sets of 100 points or more, this author 

has not yet seen any examples of poles outside the imit circle in the z-plane, 

although some have come extremely close. 

A recent contribution by Marple, ref. 5, has now altered the computational 

situation considerably. Specifically, he has derived a recursive algorithm for 

the solution of the matrix equations of the FSB technique, where the number of 

computations are comparable to that required for the Burg technique. Furthermore, 

he has shown that the FSB technique is not siibject to line-splitting (ref. 6), as 

the Burg technique is, nor are the spectral peaks as biased when estimating the tone 

frequency location.  The reason for these desirable features is that the FsB tech- 

nique is an unconstrained p-th order least squares minimization, whereas the Burg 
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technique is a constrained progressive-minimization procedure, structured so as to 

satisfy a preconceived recursive algorithm (ref. 3, sections 4.6 and 4.7). 

Accordingly, it is now reasonable and well-advised to reconsider the FSB 

linear predictive technique for spectral analysis of typical underwater acoustic 

waveforms which can include several tones of widely different levels in colored 

noise.  In view of the "global" optimization property (ref. 1, page 572) of the 

linear predictive technique, such high dynamic-range spectra should not be too 

adverse cases for consideration.  This memorandum will consider several such 

examples and point out some important features and properties of the linear pre- 

dictive FSB technique. 
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POWER CONTRIBUTION FROM ONE POLE-PAIR 

The power density spectral estimate of the linear predictive technique 

takes the form, at p-th order, of (ref. 1, page 568) 

?(f) = A E AE 

where polynomial 

K=o 

—>lfl<i-'     0) 

(2) 

A is the time-sampling increment, E is the prediction-error power at p-th order, 

(X^s.1.^ avA   ICIKJ    are the p-th order prediction-filter coefficients. Generalizing 

(1) to the complex z-plane, and allowing for complex data and filters, we express 

(1) as 

^^""^^ af*)a*0/^")' 
meaning that the spectral estimate in (1) is given by 

^(ex^(f2^4 ^ '^(^^• 

(3) 

(4) 

Now if 0^ has a zero at z , which is near the unit circle in the z-plane, 

then P^ has a pole-pair at the points z , l/z *, which are both close to the unit 

circle and located on the same radius vector; see figure 1. This gives rise to a 

Q = e.xf(iay3(Zoi) 

Ffaure  I.    Owe P<?|e-F«ir of <Pfe) 
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peak in the spectral function P(f), near the frequency 

T(, = 24    TT    " ^W    TT   ' (5) 

where f^ = (2fl) is the Nyquist frequency. And if j^j« /, the spectral peak is 

very large and narrow, with 3 dB bandwidth B approximately equal to 

-R - 2 0-N) j_^ _ 2(l-M r 
1 V ~ ir       ZA   ~       -IT-     ^' (6) 

If the values of f, at which P(f) is calculated, have an increment larger 

than bandwidth (6), the peak of this spectral component can be missed,and a mis- 

leading spectral calculation can result. One way to alleviate this situation is 

to calculate the power contribution due to the pole-pair in figure 1, and output 

this information in addition to calculated values of the spectral estimate. We 

evaluate this power as follows: express (3) as 

for z near z^; see figure 1. The approximation to the spectrum in the neighborhood 

of C in figure 1 is 

The area under this approximation is called the power contribution of the pole-pair 

corresponding to ^^ and  is given by the integral over the entire frequency interval; 

where y denotes coxmter-clockwise integration around the tonit circle in the z-plane. 

^sult (9) presumes \3ji<\  ; if |^ > | , we get i^(C;)/(|Z,r-(J). 
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Now we eliminate unknown ()^(QI) from (9), by observing from (7) that 

Pfr\ -        ^fc)    -  ^W (10) 

Then   (9),   (3),   (2),   and   (5)   yield for the pole-power 

>M A .    .   I_ I 

(11) 

j^a,ev;>(-i2irtAl<)j ̂      l-hl?o 

This calculation requires that one evaluate both the magnitude and argvment of the 

pole location z of ^(a) under investigation, since 

Q = eo<p(il-7r-£4) = ex|>((flr5(30). (12) 

Recall that (0^] are the filter coefficients, and E is the prediction-error power, 

all quantities evaluated for p-th order.  Alternatively, z is a zero location of 

^(*) defined in (2). 

For a real process, pole-pairs of rl?) occur in conjugate symmetry, and the 

spectrum P(f), given by (4), is even about f=o.  It is then convenient to plot only 

positive frequencies, from 0 to f^,  and double the results above.  Then we have for 

the pole-power contribution 

2E l-)2tl 
y, U€«i ^'^^) = 

)|:Q.ex;<-;27r{4)r    l-^l^l   '    ''"' 
The 3-dB bandwidth is unchanged from (6), however. 
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VOLTAGE AMPLITUDE OF A POLE-PAIR 

Although the pole locations of P(*) in (3) give a good indication of the 

frequencies of pure tones, the estimated power contributions due to these poles 

are not always good indicators of the amplitudes of pure tones, because a slight 

radial movement of a pole near the unit circle causes a large change in the esti- 

mated power contribution; see (11).  This becomes a very pronounced effect for 

tones with a large SNR (signal-to-noise ratio), a condition where we should expect 

better indicators rather than poorer ones. Therefore, an alternative technique to 

using the po\e -power contribution is preferred. 

Since we have a good estimate f of a tone frequency from (5), we can 

estimate the corresponding tone amplitude according to 

^ 1 ^X„e*f(-f2TriAw) 
Wil 

(14) 

where ^X„)|  is the available data.  (For real data, we must take 2 times this 

result). As a refinement, we could perturb f slightly, to find the local maxi- 

mum of this function.  This has been found to be a good technique in practice, 

for high SNR tones.  It gives a low-amplitude indication for spectral peaks due 

to spurious poles, and a high-amplitude indication for strong tones that are 

actually present. We needn't perform a fine-grained search over all frequencies, 

because we simply choose frequency f according to (5). Of course, we have to 

solve for the corresponding zero z^ of ^ (i^ ; however, a recursive procedure is 

described for this zero location in appendix A. 

10 
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LINEAR PREDICTION OF TONES 

We will concentrate here on multiple tones sons noise. Anticipation of 

good approximations, via linear predictive techniques applied to tones, can be 

justified by consideration of the following. Let complex waveform x(t) be com- 

posed of K complex exponentials of arbitrary amplitudes, frequencies, and phases, 

but no additive noise: 

X 

Then data value 

X (t) = "2^ AK txp (\ 2iri-t + i ^K). (15) 

It follows that 

)(.^, ^ ^^yf('l2.U)^(vi) 

Now 

k»l   "^       ^ (17) 

K. 

these K linear equations can be solved for fl^fn)^ )<ksK, and the results 

substituted in (16).  The end result is an exact expression for data value x in 

terms of past data values according to 

where coefficients ^QH} involve  *-xj>(^i'2Tr-^ Am), |sl<,i»»< K.   That is, X^ can be 

perfectly linearly-predicted in terms of its past K data values, when there is no 

additive noise.  Thus pure tones are good candidates for a linear predictive ap- 

proach.  Of course, since X^_„ can be expressed in terms of X^_jj^, ,..., X„ ,  from 

11 
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(18), it also means that backward prediction is perfect, in the absence of noise. 

As examples, we have the following: 

for K=l, 

for K=2, 

(20) 

for Ks3, 

\ = (e,^-e,f e3)x^, -(«,e,+ e,e3 4-e3e;)x^,+ (f,e»e,)x„., j    (2i) 

where 

e^ = e>7(i2H^). ^22) 

The general pattern for any K is now obvious from (19)-(21). 

It should be pointed out that if a dc component is present in the data, this 

corresponds to one of the f^ . Q.    Alternatively, if a process contains no dc 

component, but we subtract its (non-zero) sample mean, we are creating a dc com- 

ponent in the process, thereby requiring one-larger order for perfect prediction. 

This behavior is illustrated in appendix B, 

12 
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EXAMPLES 

Our first example is five equal-amplitude complex exponentials in no 

noise.  As shown in (16)-(18), perfect prediction is possible with* 5>s5th order 

filter, (except for calculator roundoff). We selected frequencies 

4- = -.fs", -3rj .22, .10,. rr. (23) 

The results of the spectral analysis procedure* for N= 100 complex data 

points and a 1024-point FFT over the ±Nyquist frequency band are given in dB in 

figure 2 for p = 5. All the plots are normalized so that their peak value reaches 

the top of the 70dB range plotted.  The magnitudes and arguments of the 5 zero 

locations of w(^ are given in table 1. 

Magnitude Argument/V ■= T/fij 

.999714 -.649911 

.999822 -.379931 

.999916 .220052 

.999105 .699925 

.999013 .850057 

Table 1.  Zero Locations of (li^   for Five Tones; p = 5. 

It will be observed that all zeros lie just inside the unit circle, rather 

than on it, and that the frequency estimate associated with each zero is accurate, 

but not perfect.  This is due to the siibtraction of the sample mean; see appendix 

B.  The spectral amplitudes depicted in figure 2 differ amongst themselves by 

12 dB, even though the true tone amplitudes were equal; there are two reasons for 

*The sample mean was siobtracted from the data set; see appendix B for a discussion 

of this effect.  All of the results to follow also correspond to subtraction of sample 

mean. 

13 
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this. One is that the spectral fimction P{f) in (1) was calculated at only 1024 

points in the tNyquist frequency ran^s, and therefore the very narrow widths of 

the peaks in P(f) have not been adequately sampled.  In fact, the 3-dB bandwidths, 

B/f^,of the 5 peaks in figure 2 are, from (6), (1.82, 1.13,0.54, 5.79, 6.29)10"^^ 

respectively, which are smaller than the frequency sampling increment 2/1024 = 

-4 
20 X 10  . This frequency sampling computation effect will contribute greatly to 

the apparent fluctuation in peak spectral indication, and can be alleviated by 

taking larger-size FFTs, or by calculating P(f) more finely just in the neighbor- 

hood of the peak indication. 

The second reason is that the peaks of P(f) do not necessarily have to 

reflect true tone powers; rather it is the area under each peak which is indicative 

of that tone power; see ref. 7 .  A calculation of these pole-powers according to 

(11) yields values .971, .967, .945, .999, and .994 respectively, compared with 

the exact value of 1.  The tone ajrplitudes, as calculated according to (14), are 

.970, .980,  .980, .981,and .971 respectively, instead of 1. Perturbation of f 
o 

in (14), about the value (5), did not significantly change the peak of (14) . 

When the order of the predictive filter is taken to be p=4, instead of the 

correct value of 5 for this complex data example, the results are as indicated in 

figure 3.  The two clos.esttones at .7 and .85 are not resolved.  The pole-powers 

are given as .99, 1.24, 1.03, and 1.85 respectively, indicating a lumping together 

of the two closest tones. The tonal amplitudes are grossly in error since none 

of the 5 frequencies were estimated accurately enough.  This example points out 

the deleterious effect of too low an order, f, for the predictive filter. 

14 
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Our next exan^le consists of the same five complex exponentials with white 

if- 
noise added, to yield a signal-to-noise power ratio  (SNR) of 7.8 dB per tone, 

as measured in the Nyquist frequency interval ("rV/jivJ.  First, in figure 4 is 

presented the spectral plot for a fifth-order prediction filter, p=5.  The fre- 

quency estimates according to (5) are in error by ||-/Ti/| =.004, on the average. 

The pole-powers and tone amplitudes are 1.06, 1.10, 1.01, .93, 1.22 and .97, .88, 

.96, .67, 1.02 respectively. 

When we repeat this same example with p changed to 10, the situation is 

much improved, as figure 5 indicates. The frequency estimates are now in error 

by I'f/'fu  =.0007, on the average.  The pole-powers and tone amplitudes are 1.05, .83, 

1.00, .76, 1.30 and 1.00, 1.04, .99, .92, 1.02 respectively.  We notice a signi- 

ficant improvement in amplitude estimation, which is due mainly to the improved 

frequency estimates.  The pole-powers are more erratic than for figiare 4. 

When the SNR per tone is reduced further, to 0 dB as measured in the Nyquist' 

band, the results in figures 6 and 7 are obtained for p=10 and 15 respectively. 

The pole-powers vary significantly from the true values for both exair5)les; however, 

the tonal amplitude estimates for p=15 in figure 7 are  rather good: 1.04, 1.11, 

1.01, .85, 1.08.  The frequency estimates are better for p=15, being in error 

^y i'f'/'^j ~ .00073 on the average.  These results are comparable to the higher 

SNR results in figure 5 where p=10 was used, when p is changed to 25, results 

substantially equivalent to figure 7 were obtained, except that there were pro- 

portionally more peaks and sharper tonal indications; see figure 8.  The large 

variation in peak values {21dB) is not too significant when we recall the fre- 

quency sampling and tone-power considerations discussed earlier. 

The SNR of each tone is the ratio of each tone power to the total noise power. 

a;J, in the Nyquist band ('i^yif^. 

15 
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We now consider a case of N=1000 real data points with 9 tones of unequal 

value in white noise. Specifically, the tonal amplitudes, powers, and frequencies 

are listed in table 2.  Spectral analysis results are presented in figures 9-11, 

Frequency/Nyquist 

0.5 • .11 
12.5 .19 
2.0 .32 

32.0 .41 
4.5 .53 

18.0 .62 
0.5 .69 

24.5 .77 
12.5 .89 

Amplitude Power 

1 
5 
2 
8 
3 
6 
1 
7 
5 

Table 2.  Nine-Tone Example 

for p=18, 2Q, and 25, respectively for noise power *M * Ti • ^^s to the realness of 

the data, we only need plot    the even spectrum from 0 to f ^. Figure 9, for 

p=18^ baurely gives any indication of the weak tone at f/fj^ = ,69, despite the fact 

that 9 real tones can be predicted via an 18 pole filter if noise were absent. 

Increasing p to 20 or 25 clearly indicates all 9 tones.  The relative peaks in 

figures 9-11 are not important, for reasons already discussed.  In table 3 are given 

the estimated tonal amplitudes, powers, and frequencies. For all tones, the frequency 

p=20 
Amplitude Power 1^3x1?" y/ Amplitude Power 5f|3?i?'^/ 
0.9944 0.524 .109834 0.9952 0.493 .109844 
4.9931 11.324 .190012 4.9933 15.868 .190006 
1.9844 1.983 .319871 1.9903 2.102 .319906 
8.0100 33.175 .410001 8.0100 67.474 .410001 
3.0033 4.691 .529956 3.0034 4.015 .529996 
5.9866 18.917 .619992 5.9869 13.091 .619997 
0.9352 0.495 .690411 0.9818 0.469 .690132 
6.9967 23.956 .770020 6.9961 18.266 .770008 
4.9837 14.663 .890013 4.9849 18.692 .890005 

Table 3. Estimated Parameters for Nine Tones 

16 
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and amplitude estimates are better for p=25 than for p=20; however, the pole power 

estimates are significantly better for p=20 than for p=25.  This appears to be due to 

the sensitivity of the pole-power to the proximity of the pole to the xxnit circle; 

see (11) or (13).  In fact, the best pole-power estimates for this example were 

obtained at p=18.  Thus there appears to be a trade-off between the pole-power and 

amplitude approaches, depending on the proximity of each pole to the unit circle. 

When white noise power <r^ is increased to 1, the value of p must be increased 

to maintain reliable results; an example is presented in figure 12. And when the 

noise power is increased to 10, the spectral estimate for p=50 is given in figure 13. 

The weaker tones at f/f  = .11 and .69i which have SNRs = -13 dB, have erratic esti- 
N 

mates for their pole-powers and amplitudes.  Larger values of p could conceivably 

be advantageous for these lower SNR tones.  Since the number of available data points 

is N=1000 here, larger values of p are certainly admissable; in fact, Akaike is 

quoted (ref. 1, page 575, footnote) as allowing p as large as 3N , which would be 

about 100 for this example of N=1000.  The stronger tones in figures 12 and 13 still 

yield reliable frequency and amplitude estimates.  For example, in figure 13, 1 dB 

tone at f/f = .19 is estimated to be at .1901, with amplitude 4,91 (rather than 5), 
N 

and the pole-power estimate is 11.2 (rather than 12.5).  Similarly, the equal- 

strength tone at f/f = .89 is estimated to be at .8902, with amplitude 4.69,  The 
N 

correspondings estimates for the larger SNR case in figure 12 were even better. 

We now consider some eScamples of tones in colored noise.  In particular^ the 

additive-noise spectrtim is depicted in figure 14 and is obsesrved to have a 45" dB 

dynamic range over the zero-to-Nyquist frequency interval; see appendix C for this noise 

exttwj>le. We now add three tones at the frequencies 

17 
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with SNRs -10, -20, -30 dB respectively, where these signal-to-noise ratios are 

measured with respect to the noise in the entire zero-to-Nyquist band.  The strongest 

tone at f^ is located in the region of highest noise density,  in fact, although the 

signal strength drops by 10 dB in going from frequency f to f , the noise density 

drops by 21 dB; thus the local SNR (Jratio of spectral densities) is better by 11 dB 

at f^ relative to f^.  In going from f to f , the signal strength drops by another 

10 dB, while the noise density drops by 7 dB; thus the "local" SNR at f is 3 dB 

better than that at f . A more thorough treatment is given in appendix C. 

The spectral estimate for N=1000 and p=25 is shown in figure 15. As anti- 

cipated by the "local" SNR results above, the sharpest and most accurate spectral 

peak is near f^.  The frequency corresponding to the argument of the pole-pair is 

written directly above each peak in figure 15 et seq., thereby enabling a ready measure 

of accuracy. 

In figures 16 and 17, the data is left unchanged, and p is increased to 

50 and 75, respectively.  The frequency estimates are progressively better in 

figures 15-17. The tone amplitude estimates in figure 17 for p=75 are accurate 

within 1.2%, 2.3%, and .02% respectively, of the true values; the pole-powers are 

less accurate, being off by 16%, 16.3% and 1.7%, respectively. 

In the next series of plots, the tones are decreased 10 dB in strength, 

to -20, -30, -40 dB SNR at f ,. f , f , respectively. Figures 18-21 correspond re- 

spectively to p=75, 100, 125, 150. 

The  two weaker tones, of -30 dB SNR at f/f = .45, and -40 dB SNR at f/f = 

.65, are both very well indicated for all the values of p considered; however the 

strongest tone, of -20 dB SNR at f/f, = .15, is never really indicated at all.  The 
N 

18 
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only reason we indicated the frequency corresponding to the argument of the pole 

near f/f = .15, is that we knew the true tone location for this simulation 
N 

example.  In practice, the spectral peak at f/f^ = .15 is not significantly larger 

than its neighbors to be able to declare it reliably; in fact, the spurious peak 

near f/f = .54 is larger than the true tone at f/f^ = .15.  This example points 

out that the "local" SNR (ratio of signal energy to noise spectral density) is more 

important in detecting and estimating tones that the "global" SNR (ratio of tone power to 

noise power ).  This result is similar to the standard FFT approach. Also see appendix C. 

The "ribbon width" of fluctuations, in the spectral estimates of figures 

18-21, is uniform with frequency, regardless of the local density value; see ref. 1, 

page 572.  However, this ribbon width is increasing as the order, p, of the filter 

increases.  This is a manifestation of the resolution-vs.-stability tradeoff that 

one must accept in spectral analysis.  Specifically, as p increases, the frequency 

resolution improves, but the stability of the estimates degrades. 

The relative amplitudes of the tone indications near f/fj, = -45 and .65 

in figures 18-21 are not important, because these peaks are narrower than the FFT 

frequency-increment, and we undoubtedlgmissed the maximum peak value; for example, 

in figure 21, the 3 dB bandwidth of the peak near f/f^ = .65 is .001 whereas the 

frequency increment is 2/1024 s .002. Thus, since the pole shifts slightly when p 

is changed, we can get variable spectral indications.  The tone amplitude indicators 

are rather good for figure 21, being in error by 2.1%, 8.3%, and 5.6% respectively. 

The frequency accuracy of the two weaker tones is extremely good, despite 

the low SNR.  The minimum error is realized for p=125 for this particular example. 

19 
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The t?est value of p to use probably depends on N, the number of data points avail- 

able, and the local SNR, Whether the nimiber of tones present is a factor is \m- 

known. 

One last example of eight tones with various SNRs ranging from -10 dB 

to -50 dB is presented in figures 22 and 23 for p=150 and 200, respectively. The 

frequency and  SffR   of each tone is indicated imder the peak indication, while 

the estimated frequency is written above the peak,in figure 22. The two tones 

corresponding to f/f = .15 and .75 are not detectable; on the other hand, the 

-50 dB SNR tone at .95 is clearly detectable.  Increasing p to 200 in figure 23 

gives a rather clear indication of the tone at ,15, but the tone at .07 is marginal 

now; but in neither case is the tone at .75 detected.* 

When the strength of the tone at f/f = .75 was increased by 10 dB, its 

spectral indication increased by 20 dB.  This indicates a thresholding effect; that 

is, if the local SNR is sufficiently large, a good indication of tone presence is 

obtained, but if the SNR is decreased, this indication rapidly disappears!* 

* In appendix C, a quantitative measiire of detectability is defined and illustrated 

for this exait^jle of eight tones. 

20 
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COMMENTS 

The applicability of linear predictive spectral analysis to multiple tones 

in noise has been demonstrated in a number of examples, including some tones with 

very small SNR.  The best filter-order, p, to choose depends on the number of 

available data points, N, and is also probably a ftonction of the local SNR (ratio 

of signal energy to noise density)    at the frequency of interest. What may be 

indicated here is several plots, each for a different value of p, all computed from 

the same data, in order to best detect and estimate different level tones in colored 

background noise.  If so, the recursive procedure of ref. 5 is very useful, since 

one can plot spectral estimates at any selected points of the recursion. 

If only one large value of p is of interest, an apparent alternative pro- 

cedure is to use the straightforward matrix inverse approach for that order p alone. 

This may be quicker and more accurate, if the computational effort is smaller. 

However, a pxp matrix will be necessary to store the sample correlations required 

in the FSB technique, and this can be excessive for large p (>100).  The storage 

requirements of the Marple algorithm are very reasonable, even for very large p. 

Nevertheless, it would be worthwhile to conduct at least one data set through both 

procedures, in order to ascertain the accuracy and reliability of these extensive 

data-processing routines that are being contemplated. 

Some results on  a comparison of linear predictive techniques with conventional 

Fourier analysis, and resolution capabilities of each, are presented in refs. 8 and "}. 

21 
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PEDGRAMS 

A Fortran program for the recursive solution of the predictive-filter 

coefficients, via the normal matrix equations encovintered in the linear predictive 

FSB technique, has been presented in ref. 5. This program has been modified some- 

what here and written in BASIC for the Hewlett Packard 9845 Calculator; for the 

two cases of real data and complex data. Modifications, leading to minimization 

of execution time, include: elimination of divisions in favor of multiplications; 

use of auxiliary variables to minimize the number of repeated calcxilations and table 

look-ups; movement of some variables outside loops to minimize look-ups; eliminate 

some unnecessary calculations; and correction of one programming error. These two 

programs are avadlable from the author; they have been compared with the direct 

matrix inverse procedure, with 11-decimal agreement in results. A simple example 

and sample print-outs are given in appendix B. 

22 
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APPENDIX A.  ZERO LOCATION OF  ^(?-) 

For a complex function f(z), suppose we have evaluated f(z) and its 

derivative at a point z fairly close to a zero z of f(z). Then we can express 

f(z) = f(z^) + t' (z^)(z-z^) for z near z^ . (A-1) 

We can then get an estimate of the zero location of f(z) by setting (A-1) to 

zero; we obtain the estimate 

f(z^) 

^2 " ^1  (f'(zT)?fO). (A-2) 
f (z^) "■ 

This procedure can be repeated by evaluating f and f at point z ; the procedure 

converges if f' (z ) ?^ 0, that is, if z is a simple zero of f(z), 
o '   o 

For our application, f(z) is given by polynomial (2).  It is thus a simple 

matter to evaluate the fvmction and its derivative at any point z.  The starting 

point for this procedure is obtained as follows: we evaluate spectral estimate 

P(f) in (1) at a large number of equally-spaced points in \^\ <   24 » cy 

means of an FFT. We then select particular frequencies where P(f) is very large 

compared to neighboring frequency points and use these as starting points in re- 

cursion (A-2).  That is, a point on the unit circle in figure 1 very close to Q 

is used as starting point z . Recursion leads to the closest zero of Qi[i) ,  namely 

z . 
o 
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APPENDIX B.  FIVE-TONE EXAMPLE, PRINT OUT, AND INTERPRETATION 

The example of interest here is the one given in (23), namely five equal- 

amplitude complex exponentials 

S 

where 

^  = 2Af, = -.^5-,-.38, .22, -70, .85. 

(B-1) 

(B-2) 

The first method of processing the data is: subtract the sample mean and 

then employ the FSB procedure.  The computer print-out results are presented in 

table B-1, and are interpreted as follows.  The sample mean of the data is complex 

and is given by the number -.02-1.003727.  The sample variance of the data is 

4.8796. The least-squares algorithm has several different ways of terminating its 

recursive procedure; the criterion encountered here is status 1, which indicates 

that the maximum specified order of 5 was realized without satisfying any of the 
is .00S3T. TVle ^^st fltfcy 

stopping criteria.  The prediction-error power of the best prediction-filtery^weights 

are complex and given by the five pairs of numbers listed together. The variance 

from the graph is realized by numerically integrating under  the spectral estimate 

(1) by means of the Trapezoidal rule, at the FFT points computed, and using the 

prediction-error power given above.  The locations of the poles are specified by 

their real, imaginary, magnitude, and argvment/r values, respectively.  The power 

content of each pole and its 3dB bandwidth are evaluated according to (11) and 

(6). And the amplitude of the corresponding tone is accomplished according to 
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(14).  These are the results quoted in table 1 in the main body of this memorandum. 

The corresponding spectral plot in figure 2 is reproduced here in figure B-1 for 

easy reference and comparison to the following results. 

It was noted that subtraction of the sample mean from a set of data can 

create an effective dc component in the original process, and thereby require an 

additional order in the filter for its prediction.  This is the reason that the 

prediction-error power of .00837 above is not zero. When we increase the filter 

order to 6, the results of table B-2 and figure B-2 are obtained. We notice a 

significant dc indication in the figure and a nearly-zero prediction error power 

of -2.1E-10; round off error has led to this very small negative nximber, corresponding 

status indicator 4, and a negative variance from the graph. We also notice that for 

this noise-free case, all  six poles are now on the unit circle and have exactly 

the correct frequency, except for round-off error.  The last pole is act\ially just 

outside the unit circle near z=l, and corresponds to the created dc component noted 

earlier. The power content and bandwidth outputs are spurious for this example, 

due to round-off error. 

Lastly, we consider the effect of not subtracting off the sample mean, but 

keeping p at 5, the results of which are given in table B-3 and figure B-3. We 

again see perfect pole locatiqn estimation , as predicted by (16)-(18), and a 

negative prediction-error power of -3.45E-11, due to round-off error. The spectral 

plots in figures B-1 through B-3 are very similar, except for the dc indication in 
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figure B-2, for reasons indicated above. 

When noise is added to the tones, the significance of removing or leaving 

the sample mean in the data becomes far less.  It appears that the only time it is 

important,is when the true dc component is very large, in which case the sample 

mean should be removed so as not to contaminate the spectral estimate in the 

neighborhood of zero frequency. All the results in the main body of this memorandvmi 

have had the sample mean removed. 
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LINEfiR PREDICTIVE SPECTRAL flHfiLVSIS FOR C011PL£>:; DflTFl. 
FORWfiRD fiND BfiCKWflRB RVERflGING. MflRPLE nLGORITHM, 5 DEC 79. 
FILTER WEIGHTS; SPECTRUM; POLE LOCATIONS AND POWERS. 
NUMBER OF COMPLEX DflTfl POINTS = IQQ 
MAXIMUM ORDER OF FILTER = 5 

MEAN OF DATA = -2. 90S99009£67E-i3£ -3. 7272203195lE-03 
VARIANCE OF DATA = 4,37953610779 

STATUS OF STOPPING CRITERION = 1 
PREDICTION-ERROR POWER = 3.3701S559879E-S3 
OPTIMUM ORDER OF FILTER = 5 
PREDICTION-FILTER WEIGHTS: 
-.79223508S32S       .073S996S3937 
-.73633337304       -.262904443791 
-.312567503922       .717233865238 
-.601825004537       .522347752701 
-.683323945939       .726735507267 

VARIANCE FROM GRAPH = 1.76044711955 

LOCATIONS OF POLES: REAL, IMflG, MAG, ARG-'PI 

-.453612913509      -.390373006423       .999714102602      -.64991145304 
Power content of pole = .970737957165   3 d£ B-andwi dth = 1. S2e0793770SE-04 
Amplitude of tone = .970852170292 

.368261571624 -.929531300933 .999822496522 -.379930705775 
Power content of pole = .967105663763 3 dB Bandwidth = 1.13e02225032E-04 
An-iBl i tude of tone = .93026470355 

.7703439763 .637496046839       .999915522625       .220052021064 
Power- content of pole = .944643918787   3 dE Bandwidth = 5.37799640595E-95 
Amplitude of tone = .979975939701 

-.58706963772        .308430154109       .999104665342       .69992545393 
Power content of pole = .999496115623   3 dE B-andwidth = 5.699S7747441E-04 
Amplitude of tone = .931047207363 

-.890208035527       .453332769306       .999012653582       .85005702917 
Power content of pole = ,994133376334   3 d£ Bandwidth = 6.2S564253147E-04 
Amplitude of tone = .970736291359 

T*Mc-   B-l.   s5«»iplc Mean SuUracfeJ 3 p ^ T 

Best Available Copy 
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LINEAR PREIiICTIVE SPECTRAL fiNPILYSIS FOR COMPLEX DFlTfl. 
FORWARD ANr BACKWARD AVERAGING. MARRLE ALGORITHM, 5 DEC 79. 
FILTER WEIGHTS; SPECTRUM; POLE LOCATIONS AND POWERS. 
NUMBER OF COMPLEK DATA POINTS = 1^^0 
MAXIMUM ORDER OF FILTER =6 

MEAN OF DATA = -2. Q8eQQQeQ2S7E-e2 -3. 72722S3 l'?51E-fi3 
VARIANCE OF DATA = 4.3795S61Q779 

STATUS OF STOPPING CRITERION = 4 
PREDICTION-ERROR POWER =-2.13350977S71E-ie 
OPTIMUM ORDER OF FILTER =   6 
PREDICTION-FILTER WEIGHTS: 
.295355531979       .379648465162 
.05668154S0S7      -.343054271582 
.4246493S3142 .93130680S6S7 

-.283376931211 -.193517751776 
-.082356553201       .204535335696 
.634547103345      -.723963642649 

VARIANCE FROM GRAPH =-43.4339553439 

LOCATIONS OF POLES: REAL, IMAG, MAG, ARG-'PI 

-.453990499742      -.391006524193       1 -.55 
Power content, of pole = 0   3 dB Bandwidth = 0 
Ampl i tijde of tone = .969947470875 

.363124552692      -.929776435333       1 -.379999999997 
Power content of pole = 0  3 dB Bandwidth =9 
Amplitude of tone = .930342333532 

.770513242771       .637423939744       .999999999995       .219999999999 
Power content of pole = 0   3 dB E-andwidth = 0 - -----^ 
Amplitude of tone = .980010321796 

-.537785252284       .809016994334       1 .69999999999 
Power content of pole = 0   3 dB Bandwidth =0 
Amplitude of tone = .981164116999 ■ 

-.391006524135       .453990499756       1 .84999999999 
Power content of pole = 0   3 dB Bandwidth =3 * "   " ' 
Ariiplitude of tone = .970338^660337 

1.000S0001274 -S.64367941244E-09 1.00300001269 -2.75136S57492E-09 
Power content of pole = 4.03994794443E-04 3 dB Bandwidth =-S. fH7S7iri40i if^g-tgia 
Amplitude of tone = 1.51325361755E-08 

la tie   3-2,     SowjJt   Mtei*,   Sw^WtUj J» ^ ^ 

Best Available Copy 
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LINEAR PREDICTIVE SPECTSfiL RHfiLYSIS FOR COMPLEX BflTR. 
FORWARD AND BACKWARD AVERAGING. MARPLE ALGORITHM, 5 DEC ?'?. 
FILTER WEIGHTS; SPECTRUM; POLE LOCATIONS AND POWERS. 
NUMBER OF COMPLEX DATA POINTS = lOQ 
MAXIMUM ORDER OF FILTER = 5 

MEAN OF DATA = -2. e0S8Q90e2S7E-92 -3.7272203155 lE-03  «<5t Suljbracted 
VARIANCE OF DATA = 4.S7999999992 

STATUS OF STOPPING CRITERION = 4 
PREDICTION-ERROR POWER =-3.44715489332E-11 
OPTIMUM ORDER OF FILTER = 5 
PREDICTION-FILTER WEIGHTS: 
-.794144430748       .979648473365 
-. 7374e2942v576      -.263405789393 
-.312313565611       .717901S19315 
-.6016965446 .524333279376 
-.634547185931       .723968627434 

VARIANCE FROM GRAPH =-1.e358893576SE-98 

LOCATIONS OF POLES: REAL, IMAG, MAG, ARG--PI 

-.453990499742      -.391006524196       1 -.65 
Power cent.ent of pole = O   3 dE Bandwidth = 0 
AmpliT-ude oi'   tone = .970163673893 

.363124552691      -.929776435335       1 -.379999999997 
Power content of pole = 0  3 dB Bandwidth = 0 
Amplit'jde of tone = .938342833582 

.770513242777       .63742393975        1 .219999999999 
Power content of pole =8   3 dB Bandwidth = O 
Amplitude of tone = .938018321793 

-.537735252291       .889816994334       1 .7 
Power content of pole = 8   3 dE Bandwidth = 0 
Amplitude of tone = .931164116992 

-.89188652419        .453998499752       1 • S5 
Power content of pole = 8  3 dB Bandwidth = 0 
Amplitude of tone = .971017684263 

Best Available Copy 

55 



TM No. 
791218 

——^-—— y 

1 

\ 

o 
A 

^ 

/I 
^ 
\ 

o 
o 

II 

■■"T  

  ^ 

/ 

"~^ 

) 

-^ N 
• 

; 

M) 

fS 

In 
/I 

C+.   Co 

1" 

4; 
r 

r 

r 

^ 

I 

S! 
en 

56 



TM No. 
791218 

APPENDIX C.   DETECTABILITY CRITERION 

Suppose a received waveform x(t) is characterized as follows: 

where sfi) is a deterministic signal waveform and n(B is a stationary noise process 

with spectriam Guf). Let us process x(B linearly according to correlation operation 

2r = |cH:w(0xfe, (C-2) 

where weighting w(-^ is to be selected to maximize the deflection of output random 

variable Z, Letting m and <r* be the mean and variance of z, we define deflection 

for processor (C-2).  The optimum weighting is found to be 

with corresponding maximxmi value 

!2 

(C-3) 

(C-4) 

4^=1^ (C-5) 

Now suppose that signal sfi^ is narrowband, so much so that the bandwidth 

of |^(P)P is narrower that the finest detail of &„f) at the signal center fre- 

quency f .  Then (C-5) becomes 

where E is the received signal energy; this result is typical in white noise 

backgrounds.  This latter quantity is a "local" measure of signal-to-noise ratio 

at f , and is the governing statistic for detectability.  Values of (C-6)greater 
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than 10 are typically needed for good detection and false alarm probabilities. 

Let us now consider a sampled process, with time increment ^, and 

fj,= (2A) .  Then we can let 

&f)= (^Jo)j(-f/0 ftr |fl^4, (c-7) 

where J(M) is a shape f\inction defined over lu|< 1, with value 1 at U- 0.    Then 

noise power 

-t^ -I 
(C-8) 

giving 

-I 

in terms of (T^ and the shape function. 

If our signal consists of a pure tone of frequency f and amplitude 

A^, and duration N samples, then 

and  (C-6)  yields 

£   = -2^A Nj (c-io) 

I-     A?A,j JA^M c 

The leading term in (C-11) is the SNR of this signal tone, referred to the total 

noise in the band (~f,a'fji) • l^e nimber of samples available, N, enters linearly 

into this result. And the last'term depends on the shape of the noise spectrum. 

The noise example we will consider is that depicted in figure 14, naiiely 
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where W,< is white noise with variance 6^ ^ and 

o<' =0.7. 

We find, for example (C-12), 

t (S^ 

i\- "d 
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(C-13) 

I- 'K&<Yl-'\Tr-^/-fj\ 
, W<-fL 

fT- > M< I 

^1     ^^      l+4«^'^+-<'^ 
( = ^2.15-tf^   -fer   0^= O.T) (C-I-*) 

Substitution in (C-11) yields 

4 = -^N 
14-4«<'^ +•< 

C ri-^T -t<€ '^f f-.--f./0 (C-15) 

A-^N 
C 

— tx^ e^i ■(-.v+,/i) (C-16) 

Equation (C-15) is evaluated in table C-1 for the parameters of figure 

22.  It will be observed that values of dp less than approximately 15 correspond 

to tones that are difficult to detect in figure 22, whereas values of d^ greater 

than 15 correspond to the detected tones in figure 22.  Thus the linear predictive 
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technique yields not only the spectral estimate of the process under investigation, 

but also detects tones at local SNRs only a couple of dB poorer than an optimum 

processor. The quantitative measure in (C-6) is a very useful parameter for 

quickly ascertaining the detectability of tones in colored noise. 

•07 -10 17.6 
•15 -20 13.2 
.35 -30 57.9 
.375 -30 80.6 
.45 -30 190.4 
.65 -40 89.1 
.75 -50 14.1 
•95 -50 22.0 

Table C-1.  Deflections for Figure 22; N = 1000, ^ = 6.1 
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